\qquad
Word bank:

binary	hexadecimal	encoding	permanent storage
buffer	write/writing	read/reading	bytes
bit	convert	hard drive	volatile memory
operating system	software	eight	two
sixteen	processor	lookup	search
time	idle	digital	analog
data	faster	slower	hardware

Directions: Using the word bank above, fill in the missing elements in the following paragraph. Words may be used once, more than once, or zero times. (Don't forget to arrive at meaningful definitions for unknown words.)

Computers carry out useful functions by organizing \qquad (1) for efficient writing to and
\qquad
(2) (3) devices, such as a \qquad (4).

Components within the computer work together to \qquad (5) user-inputted information from human friendly forms to formats that can be manipulated by the \qquad (6) under the direction of the computer's governing software package called the \qquad (7).

The smallest unit of information that computers can manipulate is a single \qquad (8) which can take on one of \qquad (9) possible values which we represent often as a one or a zero. In other words, we can think of a computer as a machine only capable of manipulating numbers in a base (10) system. Since nearly all chunks of data require more than a single (11) of data storage, we often group \qquad (12) bits together and measure the size of a chunk of data in a computer using a count of the number of \qquad of memory required to hold the information.

Representing this digital information on screens and print outs, however, is most conveniently done by converting the base \qquad (14) encoded information in \qquad (15) notation which involves each position taking on one of \qquad (16) possible values. While computers don't really care how we represent this more compact form of presenting digital data, the convention is to use the symbols \qquad (17) through nine and capital A through F to do so.

