
Python Programming 2: Algorithms, modeling, and
data processing
Fall 2019 Syllabus:The Community College of Allegheny County.

Jump to a section:

Catalog Description
Course Scope
Learning Outcomes
Listed Topics
Learning Cycle
Assessment
Student Resources
Outside References
Syllabus Author

Course Catalog Description

Building on language foundations developed in Python 1, this second semester python course focuses on the
language's powerful file processing and data manipulation tools. Students will explore core libraries that allow
programs to access operating system services, manipulate data of many types, interact with the user through
graphical user interfaces (GUIs), and crunch out data metrics. This fast-paced course is project-focused and
builds not only python programming skills but also best practices in object-oriented software design.

back to top

Course Scope

The following flow chart depicts the scope of this proposed second course in python programming. Three
semesters of python coursework is included in the chart to provide context for the four course components under
study in this course--these are the colored rectangles.

The knowledge blocks shown in the diagram are organized into learning components symbolized by the
rectangles with thick borders and bold text. These larger, umbrella-like components are broken down into smaller
learning modules which progress in a sequence shown with arrows flowing throughout the diagram.

Learning to program in any computer language is an iterative process in which more advanced learning depends
on mastery of language fundamentals. The core of the python language is encapsulated in the Language Core
and Object Oriented Python components in the diagram. Together, these two components represent the scope of
a first course in Python.

Once the core components of a language are internalized, carrying out more complex computations with a
variety of data types and design goals becomes possible, and these are the "middle four" components in the
diagram below. They may be taught in any order, but a suggested sequence is shown in with arrows.

back to top

Learning Outcomes

File manipulation and data storage

1. Identify and load a python library suitable for processing files of a given type

2. Integrate a python file processing library into a program to accomplish application objectives

3. Integrate an operating system process into a given program, making use of core python OS-related
objects



Graphical User Interfaces (GUIs)

1. Create instances of the core python graphical user interface (GUI) components: buttons, text boxes,
select boxes, and images

2. Use data-display related GUI components to convey meaningful information extracted from a simple data
set

3. Conduct a user interview to determine design requirements for a GUI and implement those findings into a
working program

4. Implement a user-centered design in python and gather user feedback to a prototype

Algorithm Design

1. Model the core phases of smart algorithm design with a simple, non-technical design problem

2. Convert a given algorithm written in English into working python code and test its functionality

3. Design a new algorithm to solve a technical problem

4. Implement the new algorithm in python and test its functionality

Simulation

1. Implement the classic Monto Carlo simulation method to a given competitive modeling scenario

2. Creatively design and implement a simulation of a given human or system interaction using best practices
in design phases

General

1. Using a version control system, like git, curate an online portfolio of working and documented python
code from at least 2 course projects

2. Effectively discuss their python skills and their applications to an employer during a practice interview

back to top

Listed Topics

File manipulation and data storage

File types and python object adapters

Looping through files with dictionaries

File-based data stores

Operating system interaction

Graphical User Interfaces (GUIs)

User-interface GUI components

Data display GUI components

GUI Design through user interview

User-centered design

Algorithm Design



Top-down design approach

Psuedocode versions of algorithms

Algorithm implementation in python

Searching, sorting, and traversal algorithms

Simulation

Monte carlo simulations

Simulation design phases

Model and unit testing

General

Technical interview preparation

back to top

Assessment of learning objectives

Assessment Philosophy

As a lab-like course built around using python code to solve non-trivial, business-related problems, course
assessments in python 2 are based on fully-baked student work products. In relation to the course learning
model diagrammed above, student work projects emerge at the end of each module and at the conclusion of the
component's culminating project.

The instructor provides incremental feedback to students during the course of the module's individual project
work time--often called formative assessment. Small misunderstandings or trouble spots that emerge inside a
module can be ironed out before they impede the larger learning goals of the component. After all modules are
mastered and a final project completed the instructor offers additional, formal feedback concerning the project's
alignment to its design specifications is provided.

Students complete the following steps in in advance of their presentation and feedback session for their
culminating project:

Program design specifications

Program flow diagram adjusted to reflect actual implementation

Thoughtful responses to "heart-of-the-matter" questions

back to top

Using design criteria alignment in place of rubrics

The best assessment tools are those with which the students directly engage in creating and using. This can
take the form of a class-generated project rubric, for example. As students create assessment criteria prior to
implementing a project, the resulting work is both more likely to align to the assessment criteria and meaningfully
assist students in completing their work. When that rubric is then used by the students to assess their own work,
valuable mental processes are underway which tend to naturally improve skill and confidence.

Rubrics are widespread and useful tools for many types of student work outside of the technical design realm. In
a coding class, such as this python 2 course, the process of assessing student code against initial design
requirements organically takes the place of rubric-based assessment without displacing its generic value as a
teaching tool.

back to top



Mapping project performance to course letter grades

The following table serves as a possible correlation guide between module and component project assessment
and the formal course letter grades instructors assign to each student at the conclusion of the semester:

Course Letter grade Student performance criteria
A Independent practice for each model is completed

and documented. Culminating projects for each
component meet all specified design criteria.
Component reflections show evidence of synthesis
with other technical learning domains.

B Independent practice for each module has been
attempted but not consistently documented to
reveal command of the code. Culminating projects for
each component meets some but not all design
criteria. Component reflections show moderate
thought, limited to current learning topics.

C Independent practice for 1/2 to 2/3 of modules has
been attempted but not consistently documented.
Culminating projects for each component meets some
but not all design criteria. Component reflections
show low levels of thought relative to A and B work.

D Independent practice for less than 1/2 of modules
has been attempted but not consistently documented.
Culminating projects for each component meets few, if
any design criteria. Component reflections are
incomplete.

F Independent practice for 1/4th or fewer of modules has
been attempted and not consistently documented.
Culminating projects were not meaningfully
attempted. Component reflections were not
attempted.

back to top

Recommended student resources

Print Book: Python Programming: An Introduction to Computer Science, 2nd Edition, by John Zelle,
Franklin, Beedle, and Associates Independent Press. Amazon link. 

Online learning tool: Code Academy's Interactive Python programming course

Python Software Foundation's Python 3 Language reference 

back to top

References for syllabus design

The following resources were consulted in the design of this course syllabus:

University of Washington's Python 100 course syllabus 

Harvard University's CSCI E-7 Introduction to Python course syllabus and resource list 

Python Programming: An Introduction to Computer Science, 2nd Edition, by John Zelle, Franklin, Beedle,
and Associates Independent Press. Amazon link. 

Think Python: How to Think Like a Computer Scientist, 2nd edition, by Allen Downey, Green Tea Press.
Link to PDF of book online. 

https://www.amazon.com/gp/product/1590282418/ref=oh_aui_search_detailpage?ie=UTF8&psc=1
https://docs.python.org/3/reference/index.html
https://canvas.uw.edu/courses/1026775/pages/python-100-course-syllabus
https://canvas.harvard.edu/courses/8251/assignments/syllabus
https://www.amazon.com/gp/product/1590282418/ref=oh_aui_search_detailpage?ie=UTF8&psc=1
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf


back to top

Accommodations for Individuals with Disabilities:

The college recognizes its responsibility to provide academic and nonacademic services and programs equally to
individuals with and without disabilities. To this end, the college provides reasonable accommodations for
qualified students and employees with documented disabilities consistent with the requirements of the Americans
with Disabilities Act, sections 503 and 504 of the Rehabilitation Act and other federal, state and local laws and
regulations. The college maintains an Office of Supportive Services at each campus location to receive, review
and evaluate requests from students who require an accommodation with respect to their educational program.
Students’ requesting reasonable accommodations due to a documented disability must first register with their
campus’ Supportive Services Office and obtain an official letter identifying approved accommodations to be
distributed to their faculty members.

Attendance Procedure for Pregnancy and Pregnancy Related Conditions:

In accordance with Title IX of the Education Amendments of 1972, absences due to pregnancy or related
conditions, including recovery from childbirth, shall be excused for as long as the absences are determined to be
medically necessary. Students will be provided with the opportunity to make up any work missed as a result of
such absences, if possible. For more information or requests for accommodations, students should inform their
instructor(s) and/or contact the Civil Rights Compliance Officer/Title IX Coordinator, Sumana Misra-Zets, at
412.237.4535 or smisra@ccac.edu.

Attendance Procedure for Religious Observance

The college will make reasonable efforts to accommodate students who must be absent from classes or miss
scheduled exams in order to observe a religious holiday or participate in some other form of religious
observance. Students shall be provided, whenever possible, reasonable opportunity to make up academic
assignments missed due to such absences, unless doing so would create or impose an undue burden on other
students or the College. It shall be the students’ responsibility to provide written notice via the Request for
Accommodation for Religious Observances Form (accessible at https://www.ccac.edu/nondiscrimination/) to
every instructor for each course in which an accommodation is being requested. For more information contact
the Civil Rights Compliance Officer/Title IX Coordinator, Sumana Misra-Zets, at 412.237.4535 or
smisra@ccac.edu.

Chosen First Name Procedure for Students

Many individuals use names other than their legal first name to identify themselves for a variety of personal
and/or cultural reasons. The college seeks to provide an inclusive and non-discriminatory environment by making
it possible for students to use a chosen first name on college records when a legal name is not required. Chosen
first names may not be applicable in certain programs due to the requirements of accreditation organizations and
clinical sites. For more information, please see the Student Handbook

Syllabus Author

Eric Darsow, Faculty, Computer Information Technology department, Community College of Allegheny County

back to top
`

https://www.ccac.edu/Academics/Academic-Rules-and-Regulations/CCAC-Student-Handbook/

